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In recent years, time-resolved multivariate pattern analysis (MVPA) has

gained much popularity in the analysis of electroencephalography (EEG) and

magnetoencephalography (MEG) data. However, MVPA may appear daunting to

those who have been applying traditional analyses using event-related potentials

(ERPs) or event-related fields (ERFs). To ease this transition, we recently developed

the Amsterdam Decoding and Modeling (ADAM) toolbox in MATLAB. ADAM is an

entry-level toolbox that allows a direct comparison of ERP/ERF results to MVPA results

using any dataset in standard EEGLAB or Fieldtrip format. The toolbox performs and

visualizes multiple-comparison corrected group decoding and forward encoding results

in a variety of ways, such as classifier performance across time, temporal generalization

(time-by-time) matrices of classifier performance, channel tuning functions (CTFs) and

topographical maps of (forward-transformed) classifier weights. All analyses can be

performed directly on raw data or can be preceded by a time-frequency decomposition

of the data in which case the analyses are performed separately on different frequency

bands. The figures ADAM produces are publication-ready. In the current manuscript,

we provide a cookbook in which we apply a decoding analysis to a publicly available

MEG/EEG dataset involving the perception of famous, non-famous and scrambled faces.

The manuscript covers the steps involved in single subject analysis and shows how

to perform and visualize a subsequent group-level statistical analysis. The processing

pipeline covers computation and visualization of group ERPs, ERP difference waves,

as well as MVPA decoding results. It ends with a comparison of the differences and

similarities between EEG and MEG decoding results. The manuscript has a level of

description that allows application of these analyses to any dataset in EEGLAB or

Fieldtrip format.

Keywords: MVPA, temporal generalization, decoding, EEG signal processing, time-frequency analysis, ERPs

1. INTRODUCTION

Since Haxby and colleagues popularized MVPA for functional magnetic resonance imaging (fMRI)
(Haxby et al., 2001), multivariate approaches have gained widespread popularity. Initially, MVPA
was often used as an abbreviation for multivoxel pattern analysis, but in recent years it has
becomemore common to let the acronym denote the generally applicable termmultivariate pattern
analysis. MVPA can refer to a number of related multivariate analytical techniques but is typically
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used when referring to the practice of characterizing (decoding)
the difference between experimental conditions based on the
observed patterns of brain responses in those conditions.
Curiously, although the multivariate nature of EEG has long
been recognized (e.g., Peters et al., 1998; Mitra and Pesaran,
1999), widespread adoption of MVPA to decode experimental
conditions using brain activity has been much slower in EEG
and MEG research than in fMRI. In recent years however,
MVPA decoding approaches have started to gain popularity in
EEG and MEG research too. Multivariate analysis in EEG and
MEG offers a number of analytical advantages over univariate
time-series analysis, such as the ability to look at temporal
generalization to characterize neural dynamics over time (King
and Dehaene, 2014), the use of representational similarity
analysis to map different physiological measures or anatomical
substrates onto each other (Kriegeskorte et al., 2008; Cichy et al.,
2014), as well as the ability to establish a common performance
measure to map behavioral onto neural data (Fahrenfort et al.,
2017b). Moreover, MVPA allows one to quantify experimental
effects without a-priori electrode or channel selection, potentially
identifying differences between conditions that are harder to
detect using conventional analyses (Fahrenfort et al., 2017a).
Indeed, many researchers now prefer to use multivariate analyses
over traditional ERP/ERF analyses based on signals averaged over
epochs (Mostert et al., 2015; Kaiser et al., 2016; Wardle et al.,
2016; Contini et al., 2017; Marti and Dehaene, 2017; Turner et al.,
2017).

Consequently, some who have been employing traditional
univariate ERP analyses may be considering switching to
MVPA or extending their analysis pipelines with MVPA.
However, although a number of decoding toolboxes exist,
this step can appear daunting to those who have been using
software packages with graphical user interfaces (GUIs), like
EEGLAB or BrainVision Analyzer. For this reason, we developed
the ADAM toolbox (from here on simply referred to as
ADAM) for the MATLAB platform. ADAM takes EEGLAB
or Fieldtrip data formats as input, and performs multivariate
analysis using a relatively simple specification of the required
parameters. Although ADAM has no GUI, the toolbox requires
no programming experience, only rudimentary knowledge of
MATLAB such as opening and closing of text files and
running commands in the CommandWindow. ADAM performs
standard analysis of raw EEG/MEG data (both ERP averages
and decoding results), but also provides a number of additional
capabilities. For example, it is able to compute temporal
generalization matrices (King and Dehaene, 2014) and it can
run a time-frequency analysis prior to decoding. In this case,
results are plotted in a time-by-frequency matrix, or temporal
generalization matrices for particular frequency bands. Time-
frequency analysis can either be based on total power, or on
induced power. Furthermore, ADAM can simultaneously run
a forward encoding model (FEM) in addition to a backward
decoding model (BDM), allowing one to reconstruct patterns of
neural activity that were never present during model generation
(Brouwer and Heeger, 2009; Fahrenfort et al., 2017a).

The current article does not cover all of these options, but
rather takes a subset of them as an entry-level introduction for

those who have been doing ERP research and want to explore
multivariate analysis. It covers decoding of raw EEG/MEG
data and describes an analysis pipeline in which ERPs are
compared to decoding results. It also shows how to compute
and visualize temporal generalization matrices which allow one
to look at the stability of patterns of neural activity over
time (King and Dehaene, 2014). Finally, the analysis pipeline
compares decoding of EEG to decoding of MEG data. Note
that this article is not primarily intended as an explanation of
why to perform multivariate decoding analyses (although some
advantages of MVPA over ERPs are highlighted), but rather to
explain how to perform these analyses. At the end of the article,
one should be able to run decoding analyses on any epoched
EEG dataset in EEGLAB or Fieldtrip format. Along the way,
the article briefly explains basic terminology such as decoding,
classes/classification/classifier, temporal generalization, train/test
schemes (such as k-fold) in the context in which they are
first introduced. For more detailed explanations we refer to
introductory texts such as Blankertz et al. (2011), King and
Dehaene (2014), and Grootswagers et al. (2017). The article
also assumes working MATLAB knowledge. Programming
experience is not required, but the reader should be able to open
and close files in MATLAB and know how to execute snippets of
code in the MATLAB Command window, which is easy to learn
even for those who have not used MATLAB before.

The data that we analyze in this manuscript come from a
publicly available MEG/EEG/fMRI dataset. This dataset contains
event-related responses to famous, non-famous and scrambled
face stimuli, and was acquired and made available by Daniel
Wakeman and Richard Henson (Wakeman and Henson, 2015).
The dataset contains the type of factorial design that is common
to many experiments. The manuscript is organized as follows:
the methods describe where the sample data can be obtained,
where to obtain the toolbox and its dependencies, how to
install the toolbox on MATLAB and provides code that shows
how to run the first level (single subject) analyses. The results
section provides the code to run and plot the results from
the group analyses. Although somewhat unorthodox, providing
these together in the results section improves coherence. This
way, the code that generates the plots can be presented together
with the plots themselves. The results section contains group
analyses of ERPs, group analyses of decoding results, examples
to plot forward transformed classifier weights (equivalent to
univariate topomaps, which are interpretable as neural sources)
(Haufe et al., 2014), and shows temporal generalization matrices
of the EEG and MEG results. It also provides an example of how
to plot temporal generalization for a specific time window and
ends with a direct comparison of EEG to MEG. The discussion
considers the degree to which MVPA analyses can provide extra
information over standard univariate analysis, based on the
results that were presented.

2. MATERIALS AND METHODS

2.1. Data
The raw data are available at https://openfmri.org/dataset/
ds000117. However, due to the size of the original data files
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in the public repository (which also include fMRI), we have
created a slim-sized version of the data in standard Fieldtrip
format to facilitate easy reproduction of the analyses as described
in this article. These data files can be found on the open
science framework by following the following link: https://osf.
io/p2k97/files. To replicate the analyses described here, store
all files under DATA (20 GB) in a local directory. No pre-
processing was applied to the original data other than down-
sampling from 1,100 to 275Hz, and epoching around the
target stimuli with an interval between −0.5 and 1.5 s. The
MEG data were obtained from an Elekta MEG system, and
were processed with MaxFilter 2.2 (Elekta Neuromag) by the
original authors (Wakeman and Henson, 2015). To further
reduce data overhead, we removed the magnetometers from
the original data. Magnetometers have a more diffuse spatial
profile with large overlaps between neighboring sensors when
compared to planar gradiometers (Gross et al., 2013). Removal of
magnetometers after application of aMaxFilter is not uncommon
(e.g., see Kloosterman et al., 2015), and a pilot analysis confirmed
that this did not substantially affect classification performance.
The abovementioned repository includes a MATLAB script
under SCRIPTS, that converts the original data as supplied by
Wakeman and Henson to the files we posted, but since this step is
idiosyncratic to whatever system is used to acquire EEG or MEG
data, we did not make it part of the analysis pipeline we describe
in the remainder of the text.

2.2. Task
The task employed during the experiment was described in
detail by Wakeman and Henson (2015). For ease of reference,
we briefly explain the task here. Every trial started with a pre-
stimulus period between 400 and 600ms (randomly jittered)
containing a white fixation cross on a black background. Next the
target stimulus appeared for a random period between 800 and
1,000ms. The target stimulus was a cut-out of a photo of a face on
a black background, overlaid with a white fixation cross. The face
could be either a famous, non-famous, or phase scrambled face.
Each image was presented twice, with the second presentation
occurring either immediately after the previous one (Immediate
Repeats), or after 5–15 intervening stimuli (Delayed Repeats).
Each type of repeats occurred in 50% of the trials. Face identity
was not task relevant, subjects only had to indicate whether a
given stimulus was more or less symmetrical than the average
amount of symmetry across all photos. Participants used their
left or right index finger to indicate symmetry, counterbalanced
across subjects.

2.3. Participants
Data was collected from 19 participants (8 female). Further
details can be found in Wakeman and Henson (2015).

2.4. Requirements
ADAM works under a relatively recent version of MATLAB
(≥R2012b, older versions might or might not work) with
the Signal Processing Toolbox and Statistics Toolbox installed.
Further, when running first level (single subject) analyses it
depends on a recent version of EEGLAB (Delorme and Makeig,

2004) (≥13, older versions might or might not work) and a recent
install of Fieldtrip to perform time-frequency analysis prior to
decoding (Oostenveld et al., 2011) (≥2015, older versions might
or might not work). Finally, a reasonably modern desktop or
laptop computer with standard specifications. More is better
(especially RAM), but any computer used for office work should
in principle be sufficient. All analyses presented here (three EEG
and three MEG comparisons) were executed on a 2013 Macbook
Pro with 8GB of memory, using Matlab R2014b, EEGLAB
v14_1_1b and Fieldtrip v20170704. The first-level analyses took
about 10 h to complete. If one wants to replicate these analyses
in a shorter timeframe, it is easy to shorten computation time by
lowering cfg.nfolds to 2 instead of 5, which affects the number
of folds in the experiment (reducing computation time by 60%
to about 4 h). The concept of folds is explained in section 2.9.6
below. Another way to reduce computation time is by lowering
the number of subjects in cfg.filenames, e.g., from 19 to 10
(another 50% reduction). Both these changes can be made in
the first-level script in section 2.9, and will have little effect on
the qualitative patterns of single-subject and group-level results,
although some effects may not reach significance. Group-level
analyses take very little time and can be executed on the fly.

2.5. ADAM Toolbox
When replicating the analyses in this article, we recommend
to download version 1.0.4 of the ADAM toolbox from Github
at https://github.com/fahrenfort/ADAM/archive/1.0.4.zip. This
is the version of the toolbox that was used to perform the analyses
and generate the figures in this article and is therefore guaranteed
to work with the scripts that are provided herein.We also provide
version 1.0.4 of the toolbox along with a version of EEGLAB
and Fieldtrip that are guaranteed to work with the toolbox under
TOOLBOXES on the Open Science Framework here: https://osf.
io/8vby7/download.

For regular use of the ADAM toolbox, we recommend to
download the latest version of the toolbox by going through
http://www.fahrenfort.com/ADAM.htm where users can leave
their e-mail before being forwarded to the download site on
Github. Keeping track of e-mail addresses allows us to contact
users if major bugs come to light. A simulated validation
dataset is currently being developed and will in the near future
be used to continuously validate core functionality of the
toolbox.

2.6. Installing
Installing the toolbox and its dependencies is easy. To replicate
the analyses in this article, download the file from the
repository above and unzip it. This should create a folder called
‘TOOLBOXES’ containing all three toolboxes (ADAM, EEGLAB
and Fieldtrip). This folder can be placed anywhere (e.g., 'C:
TOOLBOXES' on Windows PC, or '/Users/JJF/TOOLBOXES'
on a Mac) but do take note of the location. Next, follow the
install instructions in the text file “install_instructions.txt” that
is contained in that directory. Following these instructions will
make sure that MATLAB knows how to find the toolboxes. If
all goes well, the following should be displayed in the Command
Window (along with some other messages):
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FIELDTRIP IS ALIVE
EEGLAB IS ALIVE
ADAM IS ALIVE

When these messages are displayed, all code provided in this
article should run smoothly.

2.7. ADAM Architecture and Core
Functionality
The ADAM processing pipeline is depicted in Figure 1 (from
top to bottom). It involves: (1) Data-import and pre-processing
(2) first-level single-subject analysis (3) computing group-level
statistics and (4) visualization (plotting) of group statistics.
These steps are implemented by a number of main ADAM user
functions, all starting with the prefix adam_ (also mentioned in
the top left corner of each box in Figure 1):

• adam_MVPA_firstlevel (computes and stores first level / single
subject results)

• adam_compute_group_ERP (reads single subject ERPs and
computes group statistics which can be plotted using
adam_plot_MVPA)

• adam_compute_group_MVPA (reads single subject
classification performance and computes group statistics
which can be plotted using adam_plot_MVPA)

• adam_compare_MVPA_stats (compares outcomes of group
analyses, which can be plotted using adam_plot_MVPA)

• adam_plot_MVPA (plots the outcome of the
adam_compute_group_ or the adam_compare_MVPA_stats
functions)

• adam_plot_BDM_weights (plots topomaps of the classifier
weights or forward transformedweights, the latter of which are
equivalent to univariate difference maps and are interpretable
as neural sources, see (Haufe et al., 2014).

All ADAM user functions can be called from the MATLAB
Command Window using the same syntax: result =

adam_somefunction(cfg, input);
In this expression, cfg (short for configuration) is a variable

that specifies the parameters that the function needs. The concept
of a cfg variable was borrowed from the Fieldtrip toolbox
(Oostenveld et al., 2011), but ADAM is not part of Fieldtrip so
their functionalities should not be confused. The input variable
is not always required. It can either be a variable that contains
data, or it can specify a file path to the data. In the remainder
of the methods section, we will outline how to use each of
the main ADAM functions illustrated in Figure 1 to run a
first-level analysis, and how to run and visualize a subsequent
group analysis. We will use the Wakeman and Henson dataset
(Wakeman and Henson, 2015) as an illustration of how to use
the cfg variable to specify analysis and/or plotting parameters at
each step of the way.

2.8. Data Structure
We recommend to use a standard folder structure when
analyzing experiments using ADAM: at the highest level a
container folder for the experiment that is analyzed. Inside that
folder, there should be at least three subfolders: (1) DATA: a
folder with EEG/MEG input files, such as the epoched EEGLAB
or Fieldtrip files that are downloaded from the repository, or

the processed EEG/MEG datafiles of a different experiment. (2)
SCRIPTS: a folder that contains MATLAB scripts that perform
ADAM analyses that are particular to the experiment. Scripts are
snippets of code that tell ADAM how to analyse the data (which
are distinct from the ADAM toolbox, so one should not put these
scripts inside the toolboxes folder). When saving analysis scripts,
it is good practice to prepend the names of these scripts with a
canonical prefix so they can be easily recognized as scripts (e.g.,
prepend all scripts with “run_”), such as run_preprocessing.m,
or run_RAW_level1.m. It also helps to add further keywords like
“RAW” to indicate that the file contains a script to perform a
decoding analysis of raw EEG data, or to use a keyword like TFR
to indicate it performs a decoding analysis on time-frequency
data. Adding a keyword like “level1” can be used to indicate
that the script performs an analysis of the single subject data.
Example scripts for the analyses that are described in this article
are provided in the text but can also be found in the SCRIPTS
folder located at https://osf.io/p2k97/files. (3) RESULTS: a folder
that contains the outcome of the single subject analyses (these
are often referred to as “first level” analyses), for example when
classifying from the EEG whether subjects are viewing faces or
scrambled faces, or when classifying whether they were viewing
famous faces or non-famous faces. Each such analysis will be
stored in a separate folder. This folder in turn will contain deeper
levels created by ADAM, reflecting electrode selections and/or
specific frequencies on which the analysis was performed, and
finally a results file for every subject.

2.9. First Level (Single Subject) Analysis
In this manuscript, we describe how to run the first level analyses
for three main comparisons, using ADAM:

• non-famous faces vs. scrambled faces
• famous faces vs. scrambled faces
• famous faces vs. non-famous faces

These are performed separately on the EEG and MEG dataset,
so six analyses in total. The first script we provide below
executes the first of these analyses: non-famous vs. scrambled
faces of the EEG data. The script starts by specifying some
initial variables (such as the names of the input files and
the event codes that belong to the various factors/levels in
the experimental design, which are needed to run first-level
analyses), and subsequently specifies the cfg parameter settings
that determine the settings during a first level analysis. Note that
in MATLAB notation, comments are preceded by a percent (%)
sign and drawn in green. These comments are used to provide
a brief explanation of what a particular line of code does but
are not actually executed by MATLAB when the code runs. The
last line of the script executes the actual first level analysis using
the adam_MVPA_firstlevel function, which computes single
subject decoding and/or forward encoding results. ERPs are
computed automatically when running adam_MVPA_firstlevel.
The outcomes of the single subject analyses are stored as files
inside the RESULTS folder, which are subsequently read in
during group analysis (see section 2.11). This script can also be
found in the SCRIPTS folder on https://osf.io/p2k97/files in the
file run_firstlevels.m.
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Use RAW data Compute time-frequency representations

Test fold Training dataiteration 1

iteration 2

iteration 3

iteration 4

iteration 5

The final performance metric  is computed by averaging over test folds (in this example, K=5). 
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Option 1:  K-fold cross-validation. Requires a single data file per subject.

Testing dataTraining data

Requires separate data sets for training and testing (either using 

separate files or separate event values for train and test data)
Option 2: 

For every time point, build a backward decoding model (BDM) or forward 

encoding model (FEM) using training data, and compute performance metric 

on testing data. Weights of BDMs are forward transformed.

Import and pre-process  Import native EEG or MEG data into EEGLAB or FieldTrip 

(not part of ADAM)   format, pre-process, e.g. highpass filter, epoching, artefact   

     rejection. Baseline correction and muscle artefact rejection 

     can also be applied by ADAM during first-level analysis.

adam_MVPA_firstlevel In: Epoched files in either EEGLAB or FieldTrip format 

    Out: ADAM result files (one for each subject), containing a    

     performance metric for every train-test time sample (raw)   

     or for every train-test sample of every frequency band (tfr)

adam_compute_group_MVPA In: ADAM result files computed by adam_MVPA_firstlevel

adam_compute_group_ERP Out: ADAM stats variable(s) containing group statistics

adam_compare_MVPA_stats In: ADAM stats variable(s) containing group statistics

     Out: ADAM stats variable(s) containing group statistics

adam_plot_MVPA   In: ADAM stats variable(s) containing group statistics

adam_plot_BDM_weights  Out: publication-ready graphs of performance metrics and/or 

      topographical maps of forward transformed weights  

The performance metric  is computed over the testing data. 

FIGURE 1 | ADAM processing pipeline, from top to bottom. The top left corner of each box states the ADAM function that performs the transformations that are

described in the box. The top right describes the input-output transformation that the function performs. The output of each function serves as input for the function

described in the box below it. The adam_MVPA_firstlevel box contains more detailed information about train-test algorithms. Further details about functionality and

how to execute functions are provided in the main text.
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%% GENERAL SPECIFICATIONS OF THE EXPERIMENT

filenames = {

'S01_ds000117_EEG' 'S01_ds000117_MEG_grad' ...

'S02_ds000117_EEG' 'S02_ds000117_MEG_grad' ...

'S03_ds000117_EEG' 'S03_ds000117_MEG_grad' ...

'S04_ds000117_EEG' 'S04_ds000117_MEG_grad' ...

'S05_ds000117_EEG' 'S05_ds000117_MEG_grad' ...

'S06_ds000117_EEG' 'S06_ds000117_MEG_grad' ...

'S07_ds000117_EEG' 'S07_ds000117_MEG_grad' ...

'S08_ds000117_EEG' 'S08_ds000117_MEG_grad' ...

'S09_ds000117_EEG' 'S09_ds000117_MEG_grad' ...

'S10_ds000117_EEG' 'S10_ds000117_MEG_grad' ...

'S11_ds000117_EEG' 'S11_ds000117_MEG_grad' ...

'S12_ds000117_EEG' 'S12_ds000117_MEG_grad' ...

'S13_ds000117_EEG' 'S13_ds000117_MEG_grad' ...

'S14_ds000117_EEG' 'S14_ds000117_MEG_grad' ...

'S15_ds000117_EEG' 'S15_ds000117_MEG_grad' ...

'S16_ds000117_EEG' 'S16_ds000117_MEG_grad' ...

'S17_ds000117_EEG' 'S17_ds000117_MEG_grad' ...

'S18_ds000117_EEG' 'S18_ds000117_MEG_grad' ...

'S19_ds000117_EEG' 'S19_ds000117_MEG_grad' ...

};

eeg_filenames = file_list_restrict(filenames,'EEG'); % only EEG files

meg_filenames = file_list_restrict(filenames,'MEG'); % only MEG files

% event code specifications for factor stimulus type

famous_faces = [5 6 7]; % specifies event codes of all famous faces

nonfamous_faces = [13 14 15]; % specifies event codes of all non-famous faces

scrambled_faces = [17 18 19]; % specifies event codes of all scrambled faces

% event code specifications for factor stimulus repetition

first_presentation = [5 13 17]; % specifies event codes of all first presentations

immediate_repeat = [6 14 18]; % specifies event codes of all immediate repeats

delayed_repeat = [7 15 19]; % specifies event codes of all delayed repeats

% GENERAL ANALYSIS CONFIGURATION SETTINGS

cfg = []; % clear the config variable

cfg.datadir = 'C:\MY_EXP\DATA'; % this is where the data files are

cfg.model = 'BDM'; % backward decoding ('BDM') or forward encoding ('FEM')

cfg.raw_or_tfr = 'raw'; % classify raw or time frequency representations ('tfr')

cfg.nfolds = 5; % the number of folds to use

cfg.class_method = 'AUC'; % the performance measure to use

cfg.crossclass = 'yes'; % whether to compute temporal generalization

cfg.channelpool = 'ALL_NOSELECTION'; % the channel selection to use

cfg.resample = 55; % downsample (useful for temporal generalization)

cfg.erp_baseline = [-.1,0]; % baseline correction in sec. ('no' for no correction)

% SPECIFIC SETTINGS: EEG NONFAMOUS VERSUS SCRAMBLED FACES

cfg.filenames = eeg_filenames; % data filenames (EEG in this case)

cfg.class_spec{1} = cond_string(nonfamous_faces,first_presentation); % the first stimulus class

cfg.class_spec{2} = cond_string(scrambled_faces,first_presentation); % the second stimulus class

cfg.outputdir = 'C:\MY_EXP\RESULTS\EEG_RAW\EEG_NONFAM_VS_SCRAMBLED'; % output location

adam_MVPA_firstlevel(cfg); % run first level analysis

The script above can simply be copied and pasted/executed
directly in the MATLAB Command Window or executed from
within aMATLAB Editor window by clicking “Run” in the Editor
toolbar. The next sections provide a by step explanation of the
script by explaining the parameter settings that are used to run
the first level analysis using adam_MVPA_firstlevel.

2.9.1. Input Filenames
The filenames used for the first level analyses are specified using
cfg.filenames, the path to these files is specified in cfg.datadir

(see example code above). The toolbox is able to work with two
file formats: (1) Standard EEGLAB format with “.set” and “.fdt”
extensions (Delorme and Makeig, 2004). (2) A standard Fieldtrip
struct saved with “.mat” extension (Oostenveld et al., 2011) either
in timelock (ERP/ERF) or non-timelock epoched format. All
files should be epoched and the event code that specifies the
relevant conditions for analysis needs to be numeric and placed
at 0ms in the epoch (for EEGLAB format) or be contained in
a trialinfo field with an event code for each trial (for Fieldtrip
format).
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Both EEGLAB and Fieldtrip have a large number of importing
options for many available EEG/MEG data acquisition formats.
The file name specification for the ADAM analysis should list all
files in a cell array as in the example code above. Do not use
extensions in the filename specification. The toolbox will first
attempt to locate “.set” (EEGLAB) files, if it cannot find those
it will look for “.mat” files containing a Fieldtrip struct. The
function file_list_restrict selects files from the full file list based
on a part of the file name. This can be useful in cases like this,
where separate EEG and MEG files exist, or when files come
from different experimental sessions that need to be analyzed
separately etc. The example code above creates a separate array
of the EEG files and of the MEG files to be able to run separate
first level analyses for EEG and MEG.

It is also possible to train the classifier on one input file and
test on another input file by separating the two files using a semi-
colon (see sections 2.9.3 and 2.9.6 for more information about
train-test schemes). That way one can train a classifier on one
task, and test on another, or one can even train the classifier on
one subject and test on another subject, as long as both files have
the same data format (same number of electrodes etcetera).

2.9.2. Class Specifications and Balancing
A decoding analysis tries to discriminate between a fixed
set of experimental variables using brain data. The algorithm
that performs classification is called the “classifier,” and the
experimental conditions it tries to discriminate are called the
“classes.” Table 1 shows the factorial design of the experiment
that is analyzed in the current manuscript. The numbers in the
table are the event codes that were used to denote the various
events/conditions in the experiment. It is easy to draw a similar
table for most experimental designs.

Once the event codes in the levels of the factors in the design
are assigned to variables (see the code on the previous page), it
is easy to set up a class definition, which specifies the conditions
or groups of conditions (classes) that the analysis should try to
discriminate (classify). For example, to compare famous faces to
non-famous faces simply write:

cfg.class_spec{1} = cond_string(famous_faces);

cfg.class_spec{2} = cond_string(nonfamous_faces);

cond_string is an ADAM function that creates string
specifications from numbers because ADAM requires string
inputs. Thus, the above class definition is effectively the
same as:

cfg.class_spec{1} = '5,6,7';

cfg.class_spec{2} = '13,14,15';

TABLE 1 | Factorial design of the experiment, numbers denote event codes.

Factor “STIMULUS TYPE”

Famous Non-famous Scrambled

Factor First presentation 5 13 17

“STIMULUS Immediate repeat 6 14 18

REPETITION” Delayed repeat 7 15 19

By default, ADAM enforces balanced designs. A design is
balanced when the trial counts in the different cells of
the factorial design (as in Table 1) are equal. Unbalanced
designs (asymmetrical trial counts) can have a number of
unintended effects on the type of conclusion that can be drawn
from the analysis. There are two types of imbalances: within
class imbalances and between class imbalances. Within class
imbalances occur when event counts within classes are unequally
distributed. For example, this occurs if a decoding analysis
compares famous faces to non-famous faces (irrespective of
the factor stimulus repetition), while at the same time the
design contains many more first presentations than immediate
or delayed repeats. In such a case, the outcome might be driven
more strongly (or even entirely) by the first presentations than by
the repeated presentations. This would impact how generalizable
the effect of being famous is across the experimental design.
Because designs are often unbalanced, ADAM rebalances designs
by applying two types of corrections: within class undersampling
(throwing out trials) and between class oversampling (duplicating
trials). The act of rebalancing unbalanced designs through under-
or oversampling has been shown to convey clear performance
benefits for linear discriminant analysis and area under the curve
(Xue and Hall, 2015), which are the classification algorithm and
default performance metric that ADAM uses (see sections 2.9.3
and 2.9.5).

Between class imbalances occur when an entire class is
overrepresented in the analysis. An example of such an imbalance
would be when performing decoding of famous faces and
non-famous faces, while many more famous faces than non-
famous faces exist in the dataset. In such cases the classifier
can develop a bias by classifying the majority (or even all)
trials as famous faces. Classification performance across trials
would be higher than chance even if the classifier has in
fact no ability to discriminate famous faces from non-famous
faces, due to the simple fact that the majority of trials contain
famous faces. Therefore, ADAM rebalances classes by default
by making use of a special case of oversampling (duplicating
trials) in the training set. This is achieved by synthetically
generating instances (trials) of the class that has the fewest
number of trials (i.e. the minority class). Class instances are
generated using a modification of the ADASYN algorithm,
which generates instances that maximally drive learning during
the training phase (see sections 2.9.3 and 2.9.6) (i.e. by
generating synthetic trials that are close to the classifier decision
boundary) (He et al., 2008). In the example above, if the
class of famous faces contains 150 trials and the class of
non-famous faces contains 75 trials, ADAM would generate
another 75 synthetic trials of the non-famous faces class so
that there are an equal number of trials of both classes in the
training set.

Within classes, ADAM applies event balancing by default
through undersampling so that all event types contribute equally
to a stimulus class. In the example above, if there are 200
first presentations of a famous face (event code 5), but only
50 immediate repeats (event code 6) and 50 delayed repeats
(event code 7) of famous faces, ADAM lowers the trial count
of the first presentations to match with the others (so the 200

Frontiers in Neuroscience | www.frontiersin.org 7 July 2018 | Volume 12 | Article 368

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fahrenfort et al. The Amsterdam Decoding and Modeling Toolbox (ADAM)

first presentations would be lowered by randomly selecting 50
of those, to match with the immediate and delayed repeats).
It is important to be aware of this, as one may lose a lot of
trials if the experimental design is heavily unbalanced within
classes. ADAM also allows one to specify an idiosyncratic
ratio of each trial type in the class definition. For example, to
specify two first presentations for every immediate and delayed
repeat, use:

cfg.class_spec{1} = '5,5,6,7';

To keep things simple, the analyses that are covered in this article
will only classify the first presentation of each stimulus type. The
cond_string functionmakes it easy to create such class definitions
by combining levels in the factorial design, as was done in the
example code provided. It is also possible to use different class
definitions for training and testing, by separating the two using
a semi-colon (see sections 2.9.3 and 2.9.6 for more information
about train-test procedures).

2.9.3. Model Selection
ADAM is able to run two basic models: a backward decoding
model (BDM, default) and/or a forward encoding model (FEM,
sometimes also referred to as an inverted encoding model)
(Brouwer and Heeger, 2009). BDMs allow one to predict an
experimental variable (condition) given an observed pattern
of brain activity. The experimental variables that the model
attempts to discriminate based on brain data are called the classes
(see section 2.9.2). The model that makes these predictions is
often referred to as the classifier. The process of making class
predictions is often referred to as “classification” or “decoding,”
and involves a procedure in which some data is first used to
train the classifier (build the model), and a set of independent
data is used to evaluate its performance (see sections 2.9.5
and 2.9.6). By default, the BDM in ADAM employs Linear
Discriminant Analysis (LDA) to perform decoding, a standard
decoding algorithm that has been shown to perform well
compared to other algorithms (Grootswagers et al., 2017), and
which is able to solve classification problems for two or more
classes. All analyses described in the current manuscript use
a BDM.

While BDMs employ a categorical relationship between brain
data and experimental variables, FEMs describe an invertible
continuous relationship between experimental variables and
brain data, allowing one to predict patterns of brain activity
for arbitrary values of the experimental variable (and vice
versa). FEMs are most useful when the relationship between
the experimental variable and neural activity is continuous (e.g.,
color, orientation of a bar, position on a circle). It determines
the relationship between such a continuous experimental variable
and multivariate brain signals using a Channel Tuning Function
(CTF). The CTF allows one to reconstruct patterns of neural
activity for stimuli that were never used during model generation
and vice versa (Brouwer and Heeger, 2009; Fahrenfort et al.,
2017a). FEMs too make use of cross-validation, in which
independent datasets are used for fitting the model (training)
and validating the model (testing), also see section 2.9.6.
FEMs are not relevant to the experimental design of the data

that are analyzed and presented here, and therefore outside
the scope of this manuscript. However, there is considerable
literature available for those who want to know more (Foster
et al., 2016, 2017). The cfg.model parameter allows one to
specify whether ADAM should run a BDM or a FEM during
analysis.

2.9.4. Raw or Time-Frequency
ADAM is able to either perform MVPA analyses on raw
EEG/MEGdata, or first perform a time-frequency decomposition
into frequency bands prior to analysis. In the current manuscript,
we only analyze raw data, but ADAM is able to first compute
time-frequency representations (TFRs) prior to a BDM or FEM
analysis. The cfg.raw_or_tfr parameter specifies whether ADAM
should analyze the raw EEG/MEG amplitude over time, or
whether it should first compute TFRs by respectively specifying
“raw” or “tfr.” It is good practice to store the results from
analyses on raw data in a different folder from analyses that are
performed on TFR data. When computing TFRs, it is important
to realize that the input files for ADAM are always raw data,
ADAM will compute the TFRs internally during analysis using
Fieldtrip. There are a number of additional options available
for TFRs, such as computing induced rather than total power
(Klimesch et al., 1998; Pfurtscheller and da Silva, 1999; Fahrenfort
et al., 2012). When performing decoding on TFR data, ADAM
computes accuracy in a time-by-frequency plot by default,
but it can also compute temporal generalization matrices for
specific frequency bands when cfg.crossclass is set to 'yes' (see
section 2.9.7).

2.9.5. Performance Measures
The performance of a classifier quantifies how accurately
it can predict class membership based on measured brain
activity. There are many conceivable classifier performance
metrics, depending on the research question and goal of the
analysis. An often-used performance measure in the literature is
“accuracy,” the number of correct classifications averaged across
all class instances. When ADAM computes accuracy, it does
so for each class separately, and then averages across classes
(balanced accuracy). For example, when an analysis targets a
classification of faces and scrambled faces, ADAM computes
accuracy as:

(

number of correctly classified faces
total number of faces

+
number of correctly classified scrambled faces

total number of scrambled faces

)

2

This measure should theoretically produce chance accuracy even
when the classifier develops a bias and/or when a stimulus class
is overrepresented in the data.

A more sensitive measure to compute classifier performance
is Area Under the Curve (AUC) (Bradley, 1997). AUC is the
default performance measure that ADAM computes. AUC refers
to the area under the receiver operating characteristic, a metric
derived from signal detection theory (Wickens et al., 2002). It
constitutes the total area covered when plotting the cumulative
true positive rates against the cumulative false positive rates for
a given classification problem and—like balanced accuracy—is
insensitive to classifier bias. In a two-class decoding analysis,
this is achieved by plotting the cumulative probabilities that the
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classifier assigns to instances as coming from the same stimulus
class (true positives) against the cumulative probabilities that
the classifier assigns to instances that come from the other
stimulus class (false positives). AUC takes into account the
degree of confidence (distance from the decision boundary)
that the classifier has about class membership of individual
instances, rather than averaging across binary decisions about
class membership of individual instances (as happens when
computing standard accuracy). In other words, low confidence
decisions contribute less to the AUC than instances about
which the classifier is very confident, whereas for accuracy
all classifications are treated equally. When ADAM computes
AUC in multi-class problems, it uses the average AUC across
all pairwise comparisons between classes (Hand and Till,
2001). Therefore, chance AUC performance is always 0.5,
regardless of the number of classes that the analysis attempts
to discriminate. The performance measure that ADAM should
compute can be specified using the class_method parameter,
e.g., cfg.class_method = 'AUC'. ADAM can also compute
a number of other measures derived from signal detection
theory, such, d’ ('dprime'), hit rate ('hr') and false alarm rate
('far').

2.9.6. Train-Test Procedures, K-fold Cross Validation
A classification analysis usually consists of two steps: one in
which a model is fitted to the data (training), and one in
which the performance of the model is evaluated (testing). These
two steps are usually performed on independent data. If they
would be performed on the same data, the performance of the
model would not only reflect true differences between stimulus
classes, but also differences that occur because of coincidental
(noise related) differences between stimulus classes (this is also
called “overfitting”). To prevent overfitting from inflating the
performance of the model, separate data are used for training
the model and testing the model. There are two ways of
achieving this goal in ADAM: (1) use two independent data
sets, one for training and one for testing or (2) use a single
dataset for training and testing using k-fold cross validation.
In k-fold cross validation, the trials are split up into k equally
sized folds, training on k-1 folds, and testing on the remaining
fold that was not used for training. Therefore, the training
set is independent from the testing set on that iteration. This
procedure is repeated k times until each fold (all data) has
been tested exactly once, while on any given iteration the trials
used for training are independent from the trials that were used
for testing. A graphical illustration of this procedure can be
found in Figure 1 in the box that says adam_MVPA_firstlevel.
Next, the performance measures obtained at each iteration/fold
are averaged to obtain a single performance metric per time
point.

In ADAM, the number of folds is specified using the
cfg.nfolds parameter. For example, if nfolds is 4, the classifier
will train on 75% of the data and test 25% of the data,
repeating the process until all data has been tested once. If
nfolds is higher than the number of trials in the dataset,
ADAM automatically lowers nfolds to a number that implements
leave-one-out testing, in which the classifier is trained on all

but one trial and then tested on the remaining trial. This
would be very time consuming, as the entire process is then
repeated equally often as there are trials in the data set. When
train and test data are already independent (for example when
using different input files for training and testing, or when
using different event codes for training and testing), nfolds is
disregarded.

2.9.7. Temporal Generalization Using Classification

Across Time
ADAM is also able to cross-classify across time. In this case,
the classifier is not only trained and tested on the same point
in the trial, but every train time point is also tested on all
other time points in the trial. This results in a train × test time
performancematrix, also called a temporal generalizationmatrix.
If classifier performance for any given train time point is high
when testing on other time points, this means that the pattern
that was used to train the classifier at that time point generalizes
to these other time points. This in turn suggests that (part of)
the underlying cortical signal is stable across this time interval.
Distinct patterns in the temporal generalization matrix allow one
to draw different conclusions about the dynamics underlying
neural processing (for details see King and Dehaene, 2014).
In ADAM, the cfg.crossclass parameter specifies whether to
compute temporal generalization or not. If cfg.crossclass is set to
'yes', ADAM computes a train× test generalizationmatrix, which
can subsequently be statistically analyzed and visualized at the
group level. The diagonal of the train × test performance matrix
is the same time series that is computed when cfg.crossclass is
set to 'no' (this is because for these diagonal time points, the
classifier is trained and tested on the same time points). For
this reason, training and testing on the same time points is
sometimes referred to as “diagonal decoding.” If cfg.crossclass
is set to 'yes' when computing the first level (single subject)
results, this affords maximal flexibility when performing group
level analysis using adam_compute_group_MVPA (see section
2.11 further below). For example, one can either compute the
full train × test temporal generalization matrix at the group
level, compute only the diagonal at the group level, or average
over particular train or test intervals at the group level (also
see section 2.12). However, computing temporal generalization
does require much more computing time. To save time, one
can opt to have ADAM downsample the input signal prior
to first level analysis (see section 2.9.8). If cfg.crossclass is
set to 'no' computation time is relatively short, but in this
case one can only compute and plot statistics at the group
level for the diagonal (training and testing on the same time
points).

2.9.8. Pre-processing: Channel Selection,

Resampling, Baseline-Correction
ADAM assumes that input files are already pre-processed
(e.g., in Fieldtrip or in EEGLAB), but to make life a little
easier ADAM is able to perform some basic pre-processing
steps. For the analyses discussed here, no pre-processing
was applied to the data prior to ADAM analysis other
than epoching and down-sampling. ADAM provides four
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noteworthy internal pre-processing options: electrode/channel
selection, resampling, baseline-correction and muscle artifact
rejection.

Channel selection is done using cfg.channelpool. This
option makes it possible to select electrodes/channels (these
are called the “features” in a decoding analysis) prior to
computing classification performance. Although classification
algorithms already intrinsically up-weigh features that
contribute to classification performance and down-weigh
features that do not, sometimes a signal is known to be
contained in a particular part of the brain. For example,
when using a visual task, occipital channels are likely to be
most informative. In such cases, classifier accuracy can be
boosted by pre-selecting channels. To keep all channels, use
'ALL_NOSELECTION'. More information about channel
selection can be found by typing help adam_MVPA_firstlevel
and/or help select_channels in the MATLAB Command window.
In the current analysis, no electrode/channel selection was
applied.

In addition, it is possible to down sample the signal prior
to running an analysis by specifying a new sampling rate using
cfg.resample. The main advantage of doing this is to save
computation time (at the expense of temporal resolution of
course). This is of particular importance when running cross
classifications to compute temporal generalization matrices, in
which the analysis is performed for every train and test time
combination (see section 2.9.7). When performing decoding
on TFRs, ADAM will use the original sampling rate to
compute TFRs, and only perform decoding on time points that
belong to the redefined sampling rate after power has been
computed. In the current analysis, the data were resampled
to 55Hz.

Third, a very common step in ERP analysis is to apply baseline
correction. ADAM can do this automatically by specifying
cfg.erp_baseline (in seconds). In the current analysis, a baseline
correction between−100 and 0ms was applied.

Finally, it is possible to remove trials containing
muscle artifacts in a certain window of the trial using the
cfg.clean_window parameter. This step was not applied in
the current analyses. One can pre-process the data using any
personal choice prior to using ADAM, as long as the data are
epoched. An overview of the effect of various pre-processing
steps on classification performance is given by Grootswagers
et al. (2017).

2.9.9. Running the First-Level Analyses
When running adam_MVPA_firstlevel using the example code
at the start of this section, it will classify the activity across all
electrodes for each train-test sample in a trial as either coming
from a famous face or from a non-famous face, and compute
average classification performance for each of these samples.
The result of each subject’s analysis will be written to disc. The
directory to which the first level results are written is specified
using cfg.outputdir. The output directory should contain a
name that is specific to a given analysis (see example code). If a
directory does not exist, ADAM will create that directory. The
resulting data structure will be briefly explained in section 2.10.
For the current manuscript, we ran three first level analyses
for EEG and the same three for MEG, so a total of six first
level analyses. The code above already ran the first analysis.
Assuming that the variables from that code (containing the event
specifications etc.) are still in MATLAB’s workspace, it is easy to
run each of the remaining five analyses using the code below.

% EEG FAMOUS VERSUS SCRAMBLED FACES

cfg.filenames = eeg_filenames; % specifies filenames (EEG in this case)

cfg.class_spec{1} = cond_string(famous_faces,first_presentation); % the first stimulus class

cfg.class_spec{2} = cond_string(scrambled_faces,first_presentation); % the second stimulus class

cfg.outputdir = 'C:\MY_EXP\RESULTS\EEG_RAW\EEG_FAM_VS_SCRAMBLED'; % output location

adam_MVPA_firstlevel(cfg); % run first level analysis

% EEG FAMOUS VERSUS NON-FAMOUS FACES

cfg.class_spec{1} = cond_string(famous_faces,first_presentation); % the first stimulus class

cfg.class_spec{2} = cond_string(nonfamous_faces,first_presentation); % the second stimulus class

cfg.filenames = eeg_filenames; % specifies filenames (EEG in this case)

cfg.outputdir = 'C:\MY_EXP\RESULTS\EEG_RAW\EEG_FAM_VS_NONFAMOUS'; % output location

adam_MVPA_firstlevel(cfg); % run first level analysis

% MEG NONFAMOUS VERSUS SCRAMBLED FACES

cfg.filenames = meg_filenames; % specifies filenames (MEG in this case)

cfg.class_spec{1} = cond_string(nonfamous_faces,first_presentation); % the first stimulus class

cfg.class_spec{2} = cond_string(scrambled_faces,first_presentation); % the second stimulus class

cfg.outputdir = 'C:\MY_EXP\RESULTS\MEG_RAW\MEG_NONFAM_VS_SCRAMBLED'; % output location

adam_MVPA_firstlevel(cfg); % run first level analysis

% MEG FAMOUS VERSUS SCRAMBLED FACES

cfg.filenames = meg_filenames; % specifies filenames (MEG in this case)

cfg.class_spec{1} = cond_string(famous_faces,first_presentation); % the first stimulus class

cfg.class_spec{2} = cond_string(scrambled_faces,first_presentation); % the second stimulus class

cfg.outputdir = 'C:\MY_EXP\RESULTS\MEG_RAW\MEG_FAM_VS_SCRAMBLED'; % output location

adam_MVPA_firstlevel(cfg); % run first level analysis

Frontiers in Neuroscience | www.frontiersin.org 10 July 2018 | Volume 12 | Article 368

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fahrenfort et al. The Amsterdam Decoding and Modeling Toolbox (ADAM)

% MEG FAMOUS VERSUS NON-FAMOUS FACES

cfg.filenames = meg_filenames; % specifies filenames (MEG in this case)

cfg.class_spec{1} = cond_string(famous_faces,first_presentation); % the first stimulus class

cfg.class_spec{2} = cond_string(nonfamous_faces,first_presentation); % the second stimulus class

cfg.outputdir = 'C:\MY_EXP\RESULTS\MEG_RAW\MEG_FAM_VS_NONFAMOUS'; % output location

adam_MVPA_firstlevel(cfg); % run first level analysis

2.10. First Level Folder Structure
The results of a first level analysis are stored in a directory path
specified in cfg.outputdir. In the example above, the first relevant
directory in this path is typically called RESULTS, followed
by a directory indicating whether decoding was performed on
raw EEG data (EEG_RAW) or raw MEG data (MEG_RAW),
but for a time-frequency analysis one might indicate something
like EEG_TFR or MEG_TFR. The last folder in the directory
structure denotes the comparison in the analysis (e.g., in the
example above, decoding famous vs. non-famous faces using
EEG data was indicated using EEG_FAM_VS_NONFAMOUS).
Inside this folder, ADAM will further automatically create
separate folders for analyses based on different channel
selections, as specified in cfg.channelpool (see section 2.9.8). If
an analysis uses all electrodes/channels as in the current example,
this folder will be named ALL_NOSELECTION, but if specifying
to only use occipital electrodes, it will create a folder called
OCCIP for that analysis. This directory will typically contain
.mat data files containing the first level result for each of the
individual subjects, or may contain separate folders for each
frequency in case it pertains to a decoding analysis of time-
frequency data. It is advisable to use a clear and unambiguous
naming scheme when specifying cfg.outputdir, as in the example
above. If one or more of the directories in cfg.outputdir do not
exist, ADAM automatically creates the hierarchy with all the
missing directories.

2.11. Group Analysis Workflow
Once the first level analyses have completed,
the next step is to perform group analysis and
visualization. ADAM has two functions that perform
group analysis: adam_compute_group_ERP and
adam_compute_group_MVPA. Group statistics on ERPs
are computed using adam_compute_group_ERP (ADAM
automatically also saves ERPs when running first level analyses),
while group statistics on multivariate analysis results are
obtained using adam_compute_group_MVPA. Both functions
read the results from the first level single subject files that
are contained in the RESULTS folder and perform a group
analysis on these data. This returns a group stats variable that
contains the outcome of one or more analyses (explained in
section 2.12 below), which can subsequently be plotted using the
adam_plot_MVPA function (explained in section 2.13 below).
In keeping with the logic of the adam_MVPA_firstlevel function,
both functions have a cfg variable as input. The cfg variable
specifies the parameters that can be adjusted when computing
group statistics and plotting results. These parameters will be
treated in detail in section 3 (Results), so that they are discussed
alongside the output that the functions produce.

2.12. Group Statistics and Multiple
Comparison Correction
The adam_compute_group_ functions read in the outcome of
first level analyses and compute group statistics on them. They
return the result in a stats variable. When executing one of
the adam_compute_group_ functions, a folder selection dialog
will pop up. This dialog allows the user to select a first level
directory from which to compute the group stats variable. One
can either select a directory referring to a specific analysis (e.g.,
EEG_FAM_VS_NONFAMOUS in the current example analysis)
or select one directory higher up that contains multiple first level
analyses (e.g., RAW_EEG in the current example analysis).When
selecting a folder that contains multiple analyses, ADAM will
compute group-level results for all the analyses contained in the
folder and return the group results of these analyses in a stats
array. A number of examples of how this works are supplied in
section 3 (Results).

The group statistics are computed by applying t-tests across
subjects using the metric that was specified during first level
analysis (for MVPA the default performance metric is AUC,
see section 2.9.5, for ERPs it is µV). The t-tests compare this
metric to a reference level for each sample (this reference level
is 0.5 chance performance in the case of AUC, or either 0 or a
cfg-defined reference condition/channel when computing ERPs).
ADAM can constrain the range of tests by pre-selecting a train
and/or test time window and/or range of frequency bands. In
addition, ADAM can average across any of these time windows
or frequency ranges. This is particularly relevant when the first
level analyses contain time-frequency results (see section 2.9.4)
and/or temporal generalization (see section 2.9.7). Examples of
how to constrain the time points that are used in a group-level
analysis using the cfg variable are given in the results section, as
for example in section 3.8.

The outcome of a group analysis yields a p-value for every
sample. Because large numbers of tests result in the well-known
multiple comparison problem (Bennett et al., 2009), ADAM has
two ways of controlling for multiple comparisons at the group
level. One option is to apply cluster-based permutation testing, in
which clusters are defined as contiguously significant t-tests. The
size of each observed cluster is defined as the sum of the t-values
in that cluster. Next, this procedure is repeated many times (1000
by default), each time randomizing the condition labels (e.g. the
AUC value and its reference .5 value) for each subject prior to
performing the t-tests. These iterations allow one to compute
a null distribution of cluster sizes under random permutation
against which to compare the actually observed cluster sizes,
based on which the p-value for each actually observed cluster
can be directly computed (section 5 in Maris and Oostenveld,
2007). This limits the number of hypothesis-related tests to the
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number of observed clusters, severely limiting the number of
relevant statistical comparisons. The standard p-value used to
delineate whether a given sample is part of a cluster is 0.05.
Alternatively, one can apply multiple comparison correction
using the False Discovery Rate (FDR) under dependency
(Benjamini and Yekutieli, 2001). FDR correction limits the false
positive rate q, such that no more than a fixed percentage of
tests (usually 5%) of the total number of significant tests can
reasonably be expected to be false positives (type I errors).
When either correction is applied, only tests that survive the
threshold under that correction are plotted as significant by
adam_plot_MVPA. Examples of both correction methods are
given in the results section, as for example in section 3.1.

It is also possible to directly compare different first
level analyses to each other. This is achieved by the
adam_compare_MVPA_stats function. In this case, two first
level metrics from different analyses are compared against each
other using t-tests. The same multiple comparison corrections
can be applied as in the adam_compute_group_ functions. Note
that this is usually only sensible when the data come from the
same experiment and/or subjects, as different experiments may
have different signal to noise ratios, hampering interpretation.
An example of this analysis is given in section 3.7 of the results.

Also note that some caution is in order when drawing
population level inferences from statistics computed on MVPA
metrics. In particular, standard statistical tests of classification
performance against chance do not allow population level
inference when the train and test set are drawn from the same
distribution (i.e., when the when they both come from the same
task), as is the case in a k-fold analysis (see section 2.9.6). In
this case, the results should be interpreted as fixed- rather than
random effects (see Allefeld et al., 2016 for details). This can be
resolved by computing information prevalence across the group,
but this metric has not yet been implemented in the current
version (V1.0.4) of ADAM. Population level inference is not
jeopardized when train and test sets are drawn from different
distributions, as when the training data are obtained from a
different task than the test data, when evaluating off-diagonal
classifier performance in a temporal generalization matrix (see
section 2.9.7), or when different first level analyses are compared
to each other at a group level (as happens when using the
adam_compare_MVPA_stats function).

2.13. Plotting Group Results
Group results are plotted using adam_plot_MVPA. This function
requires two inputs: a cfg and one or more stats variables
produced by the adam_compute_group_ functions. Each stats
variable can contain a single analysis but can also contain
multiple analyses in an array (see section 2.12). ADAM either
visualizes the outcomes of all analyses that it receives in a
single figure or plots them as separate figures. Plotting is always
constrained by the settings that were applied when computing
the group statistic (see section 2.12). As a result of these settings,
the plotting function can visualize two types of graphs: either
line graphs that plot classifier performance on the y-axis and
time on the x-axis, or graphs that plot classifier performance
using a color scale. Color scale graphs either have train-time
and test-time on the x- and y-axis (in the case of temporal

generalization), or frequency on the y-axis and time on the x-axis
(when the first level was performed with time-frequency option).
Significant time windows in line graphs are indicated by using a
thicker line, which is placed on the line graph itself and/or near
the time axis. Significant samples in color graphs are indicated
using saturated colors. Unsaturated (bland) colors either reflect
p-values that do not survive the uncorrected threshold, or are
below the multiple-comparison corrected threshold, depending
on the settings applied when computing the group-level statistic
(section 2.12).

The cfg variable specifies the parameters to adjust the plot,
such as tickmarks, y-limits, the order of the plots (in case of
multiple analyses), whether to plot the results in a single graph
or in multiple graphs (in case of multiple analyses) and so forth.
Examples of these options are given in the results section, along
with the code that produces the graphs. In addition, the help
file of adam_plot_MVPA provides a detailed description of the
options.

3. RESULTS

3.1. ERPs and Difference Waves of ERPs
In the first group-level analysis, we compute the group results
from the first-level analysis of the comparison between non-
famous and scrambled faces. We will compute the raw ERPs
of non-famous and scrambled faces, and also their difference,
and subsequently plot everything in a single plot. First, we will
compute the raw ERPs.When running the code below, a selection
dialog will pop up from which a folder can be selected. The first-
level analyses that will be plotted are contained in the folder
EEG_NONFAM_VS_SCRAMBLED (inside EEG_RAW), so that
is the folder to select. Because it is cumbersome to have to
navigate to the RESULTS folder for every a particular group
result, the user can point the function to the root folder for the
first-level analyses using cfg.startdir:

%% COMPUTE GROUP ERPs FROM FIRST LEVEL RESULTS

cfg = [];

cfg.startdir = 'C:\MY_EXP\RESULTS';

cfg.mpcompcor_method = 'cluster_based';

cfg.electrode_def = {'P10'};

% select EEG_NONFAM_VS_SCRAMBLED in the dialog

% that appears after running the following command:

erp_stats = adam_compute_group_ERP(cfg);

Two other relevant settings are cfg.mpcompcor_method, which
specifies the method used to correct for multiple comparisons
(cluster based permutation testing in this case, Maris and
Oostenveld, 2007), and cfg.electrode_def, which specifies the
electrode(s) to obtain ERPs for. The user can also specify the p-
value cut-off values (default: 0.05) and whether to use one-tailed
or two-tailed testing (default: two tailed). More information
about these and other settings can be found by inspecting the help
of adam_compute_group_ERP. Once the function has finished,
the erp_stats variable will contain group ERPs of the classes
that were specified when running the first level analysis (the
first class contained initial presentations of non-famous faces,
the second class contained initial presentations of scrambled
faces, see the code in the beginning of section 2.9). Next,
to compute the difference between these ERPs, the function

Frontiers in Neuroscience | www.frontiersin.org 12 July 2018 | Volume 12 | Article 368

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fahrenfort et al. The Amsterdam Decoding and Modeling Toolbox (ADAM)

needs to be executed once more, this time specifying 'subtract'
in cfg.condition_method. When running the code below, the
selection dialog will pop-up once more, where the user should
select the EEG_NONFAM_VS_SCRAMBLED folder as before.

%% COMPUTE DIFFERENCES BETWEEN ERPs

cfg = [];

cfg.startdir = 'C:\MY_EXP\RESULTS';

cfg.mpcompcor_method = 'cluster_based';

cfg.electrode_def = {'P10'};

cfg.condition_method = 'subtract';

% select EEG_NONFAM_VS_SCRAMBLED in dialog:

erp_stats_dif = adam_compute_group_ERP(cfg);

The snippets of code above will now have produced two variables,
one called erp_stats (containing the separate ERPs) and one
called erp_stats_dif which contains the difference between these
ERPs. ERPs and other stats variables can be plotted using
adam_plot_MVPA. This function has two inputs. The first input
is a cfg variable, specifying the parameters that are relevant
to adjust the plot, the second input contains the stats variable
containing the data to plot. Two (or more) stats variables
can be plotted using a single adam_plot_MVPA command by
enumerating them after the cfg variable while separating them
using commas:

%% PLOT THE ERPs AND DIFFERENCES IN A SINGLE PLOT

cfg = [];

% put all erps in a single plot:

cfg.singleplot = true;

% change the line colors in the plot:

cfg.line_colors ={[.75 .75 .75][.5 .5 .5][0 0 .5]};

% the next command performs the actual plotting:

adam_plot_MVPA(cfg, erp_stats, erp_stats_dif);

Two cfg parameters of adam_plot_MVPA are noteworthy here.
The first is cfg.singleplot. This setting specifies whether all the
analyses in the stats variable are plotted together in a single plot,
or whether the function produces a different plot for every stats
variable. Try setting cfg.singleplot = false (which is the default)
to see the effect. The other is the cfg.line_colors setting. ADAM
uses default line colors for graphs, which can be changed using
the cfg.line_colors parameter. This parameter specifies the RGB
colors of the lines that are plotted using a triplet of values between
0 and 1 for every line to denote the contribution red, green and
blue respectively (type doc ColorSpec in theMATLABCommand
window for more information). In the plot presented here, the
colors were changed to make them consistent with the remaining
plots in the results section. The snippet of code above produces
the plot shown in Figure 2A.

The thick parts of the line are parts of the time-series that
are statistically significant after applying the correction method
that was specified when producing the group stats variable,
these are also plotted near the time axis at the bottom. The
shaded area around the line is the standard error of the mean
across participants. Note that the initial C1 and P100 component
of the raw ERPs (erp1 and erp2) do not reach significance
despite having a very small standard error. This is due to the
fact that cluster-based permutation testing robustly determines
clusters (including cluster onsets) but is less sensitive to focal
regions of significant activity (as would be the case for the
peaks of the C1 and P100 components). If one is interested in

small windows of highly significant activity, it might be better
to apply an FDR correction (Benjamini and Yekutieli, 2001).
In the current example analysis this can easily be achieved
by re-running the group-level script above after replacing the
line that says cfg.mpcompcor_method = 'cluster_based'; with
cfg.mpcompcor_method= 'fdr';. Plotting the result again indeed
shows that both the C1 and P100 of erp1 and erp2 reach
significance under FDR correction (see Figure 2B). However,
the disadvantage of FDR correction is that it is less robust to
assessing the onset of large clusters (resulting in later onsets
than is observed under cluster-based permutation, a similar
detrimental effect of FDR correction on cluster onsets can
also be seen in Grootswagers et al., 2017, Figure 14), and less
robust to identifying sustained clusters (compare the continuous
significance of erp1 in Figure 2A to the interrupted significance
line of erp1 in Figure 2B). In the remainder of the manuscript
we will consistently be using cluster-based permutation testing
but alert the reader to the impact of using different types
of multiple comparison correction. We also point out that
the adam_plot_MVPA function has many parameter settings,
allowing one to specify the tick-marks of the x- and y-axis in
the graph, inverting the direction of the y-axis (negative up
or negative down) etc. These parameter settings will be treated
further down or can be found in the help documentation of the
adam_plot_MVPA function (type help adam_plot_MVPA in the
MATLAB Command window).

3.2. Difference Waves of ERPs
In the second analysis, we compute the outcome of three ERP
subtractions in the experiment: non-famous vs. scrambled faces
(as in the first analysis), famous vs. scrambled faces and non-
famous vs. famous faces. Below is the code to compute these three
group analyses. When running this snippet of code, a selection
dialog will pop up. This time, select the EEG_RAW folder (which
contains all of these three contrasts, as these were computed in
the first level analysis).

%% COMPUTE THE DIFFERENCE OF ALL ERP COMPARISONS

cfg = [];

cfg.startdir = 'C:\MY_EXP\RESULTS';

cfg.mpcompcor_method = 'cluster_based';

cfg.electrode_def = {'P10'};

cfg.condition_method = 'subtract';

% select EEG_RAW when dialog appears:

erp_stats_dif = adam_compute_group_ERP(cfg);

The outcome of this analysis is contained in the erp_stats_dif
variable, which is an array containing the outcome of the three
analyses.

%% PLOT THE DIFFERENCE ERPs OF ALL COMPARISONS

cfg = [];

cfg.plot_order = { 'EEG_FAM_VS_SCRAMBLED' ...

'EEG_NONFAM_VS_SCRAMBLED' ...

'EEG_FAM_VS_NONFAMOUS' };

cfg.singleplot = true;

% change the y-limits:

cfg.acclim = [-9 3];

% actual plotting:

adam_plot_MVPA(cfg, erp_stats_dif);

Running the snippet of code above produces the plot shown in
Figure 3. Two more cfg parameter settings are introduced here.
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FIGURE 2 | ERPs for the non-familiar (erp1) and scrambled (erp2) condition as well as their difference (subtraction). (A) Thick lines denote p < 0.05 under two-sided

cluster-based permutation (Maris and Oostenveld, 2007) (B) Thick lines denote q < 0.05 for dependent observations under FDR correction (Benjamini and Yekutieli,

2001).

The first is called cfg.plot_order. This parameter specifies the
order in which the comparisons inside the EEG_RAW folder
(which was selected when computing group results) are plotted.
The plot order impacts the order in which the default colors
are used for plotting, and accordingly the order of the names
in the legend. When omitting this parameter, the plot function
will use the order in the stats variable. Another parameter is
the acclim parameter, which sets the bounds for the y-axis in
line graphs. When omitting this parameter, the function will use
default bounds (which are usually fine). Here we adjusted them
slightly to remove overlap between the plots and the legend.

Figure 3 reveals that two out of three ERPs difference waves
(subtractions between raw ERPs) result in windows of activity in
which the difference is significant (as indicated by thick lines).

3.3. Inspecting the Stats Structure
These temporal windows (their start and stop point in
milliseconds and the time at which they peak) can be inspected in
the stats structure. For example, to inspect the third stats variable,
type:

erp_stats_dif(3)

This displays the contents of this analysis in the MATLAB
Command window:

ans =

ClassOverTime: [110x1 double]

StdError: [110x1 double]

pVals: [110x1 double]

mpcompcor_method: 'cluster_based'

settings: [1x1 struct]

condname: 'EEG_NONFAM_VS_SCRAMBLED

subtraction'

channelpool: 'P10'

pStruct: [1x1 struct]

reduce_dims: []

cfg: [1x1 struct]
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FIGURE 3 | ERP difference waves for the three comparisons in the

experiment. Thick lines denote p < 0.05 under two-sided cluster-based

permutation (Maris and Oostenveld, 2007).

The condname field shows that this is the analysis that
compares non-familiar faces to scrambled faces. Other
analyses can be inspected by putting a different number
between the parentheses. The mapping between the number
and the analysis that was performed may differ depending
on how the operating system orders files. To enforce
a particular order, specify cfg.plot_order when calling
adam_compute_group_ERP). The stats structure also contains
a field called pStruct. This contains the values of the significant
clusters in this analysis. The pStruct field can be accessed by
typing:

erp_stats_dif(3).pStruct
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This will show the following in the Command window:

ans =

posclusters: []

negclusters: [1x1 struct]

The pStruct field contains two fields, one for positive clusters
and one for negative clusters. As can be seen from Figure 3,
the significant window for EEG_NONFAM_VS_SCRAMBLED is
negative (by convention negative is often plotted upwards when
plotting ERPs), and indeed the posclusters field is empty, as it
is followed by empty square brackets []. To inspect the negative
clusters, type:

erp_stats_dif(3).pStruct.negclusters

This returns:

ans =

clusterpval: 0

clustersize: 51

datasize: 110

start_time: 173

stop_time: 1082

peak_time: 500

The first field is called clusterpval. This is the cluster based
p-value after cluster based random permutation (Maris and
Oostenveld, 2007). In this case, the value is 0. By default, the
cluster-based permutation test in the adam_compute_group_
functions run 1,000 times. The fact that the clusterpval is 0
means that a cluster of the actually observed size was never
obtained under random permutation, so that the p-value under
permutation is smaller than 1/1000, hence this p-value should
thus be reported as p < 0.001. The clustersize field reflects the
number of consecutive samples in the time window, the datasize
field reflects the total number of samples in the time series, the
start_time reflects the onset time inmilliseconds of the significant
window, the stop_time the offset time in milliseconds, and the
peak_time reflects the time point at which the ERP difference
was maximal. The same information can also be obtained for
decoding analyses, e.g., by inspecting the stats structure that
results from running adam_compute_group_MVPA instead of
adam_compute_group_ERP.

3.4. Training and Testing on the Same Time
Points (Diagonal Decoding)
Next, we cover how to apply a decoding analysis using very
similar code as was used to compute ERPs. First, we will run
the equivalent of the ERP analyses that were computed in the
previous sections, this time using adam_compute_group_MVPA.
When running the following code, a selection dialog will pop
up again. Select the RAW_EEG folder, after which the group
analyses will be performed.

%% COMPUTE DIAGONAL DECODING, ALL EEG COMPARISONS

cfg = [];

cfg.startdir = 'C:\MY_EXP\RESULTS';

cfg.mpcompcor_method = 'cluster_based';

% 'diag' means train and test on the same points:

cfg.reduce_dims = 'diag';

% select RAW_EEG when dialog appears:

mvpa_stats = adam_compute_group_MVPA(cfg);

After running the code above, the decoding results for
all analyses contained in the RAW_EEG folder will be
contained in the mvpa_stats variable. The only new setting
in the above is the cfg.reduce_dims variable. For now, it
is sufficient to remember that setting this to 'diag' means
that this extracts the decoding analysis in which the classifier
was trained and tested on the same points (so without
looking at temporal generalization, see section 2.9.7). To plot
the decoding results, again very similar code is used as
before:

%% PLOT DIAGONAL DECODING FOR EEG COMPARISONS

cfg = [];

cfg.plot_order = { 'EEG_FAM_VS_SCRAMBLED' ...

'EEG_NONFAM_VS_SCRAMBLED' ...

'EEG_FAM_VS_NONFAMOUS' };

cfg.singleplot = true;

cfg.acclim = [.4 .8];

adam_plot_MVPA(cfg, mvpa_stats);

Running the snippet of code above produces the plot contained
in Figure 4. This figure looks comparable to the plot contained
in Figure 3, but this time the y-axis denotes classification
performance (rather than µV as in the ERP analyses). As can
be seen from Figure 4—and perhaps unsurprisingly - decoding
produces somewhat similar results as the ERPs in Figure 3. Two
out of three decoding results show windows of activity in which
accuracy is significant after correcting for multiple comparisons
using cluster-based permutation (as indicated by the thick lines).
However, there are also some notable differences. For example,
decoding of famous vs. scrambled faces is significant for a longer
period of time than the ERP subtraction of this comparison
at electrode P10. Moreover, the difference between famous and
non-famous faces never reaches significance in the ERP, but
does reach significance in the decoding analysis. Both differences
between decoding results and the ERP at the P10 electrode must
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FIGURE 4 | Classification performance across time for the three comparisons

in the experiment. Thick lines denote p < 0.05 under two-sided cluster-based

permutation (Maris and Oostenveld, 2007).
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be due to the fact that there is information contained in the
multivariate pattern of activity across the scalp, which exceeds
the information that is contained in the P10 electrode alone. This
demonstrates one of the strengths of the decoding technique:
MVPA allows one to obtain a measure for the difference between
two conditions (stimulus classes) without having to specify
a priori in which electrode this difference emerges, while at
the same time picking up subtle differences that might not
have been noticed had such an a priori electrode selection
been made, also see (Fahrenfort et al., 2017a). In section 3.6
further below we explain how to visualize the pattern of activity
that underlies classification performance using topographical
maps.

3.5. Plotting Single Subject Results
A nice feature of ADAM is that it allows quick visualization of
group results (ERPs, classification performance etc.). However,
it is unwise to simply compute a group result without also
inspecting single subject results. For example, one should
typically ascertain whether the group result was caused by
only a few participants or whether the effect is present
in most of the participants in the sample (Allefeld et al.,
2016). Moreover, it may be that some participants show
irregularities, for example due to incidental equipment failure,
software bugs, or bad signal to noise ratio. It requires only
a single line of code to also display single subject results
when computing group results, by setting cfg.plotsubjects
to true. In the code below, the single subject results for
an analysis are plotted. When running the code, select
EEG_FAM_VS_SCRAMBLED in the RAW_EEG folder when the
selection dialog pops up.

%% PLOT SINGLE SUBJECT RESULTS

cfg = [];

cfg.startdir = 'C:\MY_EXP\RESULTS';

cfg.reduce_dims = 'diag';

% splinefreq acts as an 11 Hz low-pass filter:

cfg.splinefreq = 11;

cfg.plotsubjects = true;

% select EEG_FAM_VS_SCRAMBLED in dialog:

adam_compute_group_MVPA(cfg);

The result is shown in Figure 5. This figure shows the first
level decoding result when comparing famous to scrambled
faces. Single subject results are displayed on a grid, with the
vertical axes equalized to enable easy comparison. The tick-
marks are set on half the maximum classification performance
of that subject. This way, one can quickly inspect whether all
subjects show approximately the same effect, or whether any
subjects show large deviations. Note that the code also specifies
a splinefreq parameter in the cfg variable. When specifying
this parameter, the data is down-sampled to that frequency,
always including the sample that contains the largest peak (or
trough) in the data. Subsequently, a spline is fitted through
this down-sampled signal. This procedure effectively acts as
a low-pass filter that retains the maximum (or minimum)
in the signal, while removing high frequency information.
This parameter is particularly useful when the results contain
lots of high-frequency noise (as is typically the case for

individual subjects) and is only applied as a visualization step.
Statistical testing is always applied to the unaltered data. The
cfg.splinefreq parameter can of course also be applied when
plotting at the group level, although we chose not to do so
here.

3.6. Topographic Maps
As mentioned before, it is often useful to know the pattern
of neural activity that gives rise to classification performance.
However, weight vectors (the weights that correspond to the
features resulting from the training procedure in a decoding
analysis, electrodes in this case) are not directly interpretable
as neural sources (Haufe et al., 2014). Therefore, ADAM can
transform the weight vectors from BDM analyses to weights
that would result from a forward model. The procedure
for this transformation is simple, and results in activation
patterns that are directly interpretable as neural sources, thus
allowing one to plot an interpretable topographical map of the
activity that underlies the decoding result. The transformation
has previously been described by Haufe et al. (2014), and
involves taking the product of the classifier weights and the
data covariance matrix. The resulting activation patterns are
equivalent to the topographical map one would obtain from
the univariate difference between the stimulus classes that were
entered into the analysis. Yet, it is slightly more elegant to
derive them this way because of the direct mapping between
the decoding analysis and the topographical maps (at the same
time providing a sanity check of the data integrity of the
analysis).

Alternatively, one can visualize the correlation/class
separability maps that are obtained by taking the product
of the classifier weights and the data correlation (instead
of covariance) matrix. Correlation/class separability maps
visualize activity patterns for which the task-related signal is
both strong and highly correlated with the task, while at the
same time minimizing the influence of strong artifacts such
as eye-blinks (Haufe et al., 2014; Fahrenfort et al., 2017b).
The following code visualizes the activation patterns resulting
from the product of the forward transformed decoding
weights topographical maps, for each of the three main
analyses.

% PLOT ACTIVATION PATTERNS OF EEG COMPARISONS

cfg = [];

cfg.plot_order = { 'EEG_FAM_VS_SCRAMBLED' ...

'EEG_NONFAM_VS_SCRAMBLED' ...

'EEG_FAM_VS_NONFAMOUS' };

cfg.mpcompcor_method = 'cluster_based';

% covariance activation pattern:

cfg.plotweights_or_pattern = 'covpatterns';

% set common scale to all plots:

cfg.weightlim = [-1.2 1.2];

% time window to visualize:

cfg.timelim = [250 400];

% actual plotting:

adam_plot_BDM_weights(cfg, mvpa_stats);

The resulting topographical maps can be found in Figure 6.
Interestingly, all three comparisons show clearly significant
clusters after cluster-based permutation (Maris and Oostenveld,
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FIGURE 5 | Decoding results of individual subjects for the famous vs. scrambled faces comparison.
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2007). This is especially surprising for the famous vs. non-famous
comparison, as classification performance was not significantly
above chance for this comparison in this time interval (see
Figure 4). This could have a number of causes. For example, in
Figure 6 we plot topomaps for a particular time window (average
between 250 and 400ms), rather than looking at above chance
classification performance across time, so the pre-selection of a

temporal window is likely to impact the outcome of the cluster-
based test. Relatedly, Figure 6 shows a cluster-based permutation
test across electrodes (looking for clusters of contiguous
electrodes that remain significant after random permutation),
whereas Figure 4 performs a cluster-based permutation test of
classification performance across time (looking for clusters of
contiguous time samples that remain significant after random
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permutation). Finally, it is important to realize that a given
classifier may not always succeed in extracting the relevant
features to achieve above chance classification performance,
even when there is potentially relevant information in the data.
Selecting a subset of features (electrodes/channels), a different
accuracy measure (Bradley, 1997), different pre-processing steps
(Grootswagers et al., 2017), or a different train-test algorithm
(Cox and Savoy, 2003; Grootswagers et al., 2017) may all impact
the degree to which a decoding analysis yields above chance
classification performance.

3.7. EEG and MEG Temporal Generalization
Results
An additional advantage of performing multivariate analysis
over ERPs is the ability compute the stability of neural activity
over time by inspecting the so-called temporal generalization
matrix (King and Dehaene, 2014). Temporal generalization
matrices display how well classification performance for a given
time sample generalizes to all other time samples. Thus, a
classifier is trained for every sample, and each of these classifiers
is tested on all samples in the trial. If a classifier that was
trained on a given sample yields high classification performance
across samples from all other time points, this shows that the
neural pattern of activation is stable, otherwise classification
performance would not generalize to these other samples. The
ability to inspect temporal generalization matrices needs to be
specified during first-level analysis by setting cfg.crossclass= 'yes'
(which was indeed the case, see section 2.9.7).

In this section, we compute temporal generalization matrices
for all three comparisons, separately for the EEG data and for
the MEG data. When running the code below, a selection dialog
will appear twice. The first time it appears, one should select the
EEG_RAW folder, the second time it appears, one should select
the MEG_RAW folder.

%% COMPUTE ALL TEMPORAL GENERALIZATION MATRICES

cfg = [];

cfg.startdir = 'C:\MY_EXP\RESULTS';

cfg.mpcompcor_method = 'cluster_based';

% reduce the number of iterations to save time:

cfg.iterations = 250;

% select RAW_EEG when dialog appears:

eeg_stats = adam_compute_group_MVPA(cfg);

% select RAW_MEG when dialog appears:

meg_stats = adam_compute_group_MVPA(cfg);

The results of the EEG and MEG temporal generalization
matrices are now stored in eeg_stats and meg_stats respectively.
Importantly, we did not specify cfg.reduce_dims here, as we
did when we previously ran adam_compute_group_MVPA. This
means that the group analysis is applied to the entire temporal
generalization matrix that was computed during the first level
analyses. Another thing to note is that we specified cfg.iterations
= 250. This lowers the number of iterations that the cluster-based
permutation test applies to 250 iterations, rather than the default
1000 iterations. This is merely done to save some computation
time; with the only implication that the obtained p-values are
slightly less accurate. To obtain more accurate cluster-based p-
values keep the default at 1000 or higher. To plot all resulting

group temporal generalization matrices, both for EEG and MEG,
run the code below.

%% PLOT ALL TEMPORAL GENERALIZATION MATRICES

cfg = [];

cfg.plot_order = { 'EEG_FAM_VS_SCRAMBLED' ...

'EEG_NONFAM_VS_SCRAMBLED' ...

'EEG_FAM_VS_NONFAMOUS' ...

'MEG_FAM_VS_SCRAMBLED' ...

'MEG_NONFAM_VS_SCRAMBLED' ...

'MEG_FAM_VS_NONFAMOUS' };

% actual plotting, combine EEG/MEG results:

adam_plot_MVPA(cfg, eeg_stats, meg_stats);

The result can be seen in Figure 7. This figure shows the
temporal generalization matrices for all three EEG comparisons
in the top and for MEG in the bottom row. The eeg_stats and
meg_stats variables passed as a comma separated list as before,
and the cfg.plot_order parameter specifies the order in which
to plot the comparisons, as has also been shown previously.
When eyeballing these graphs, there are three notable differences
between the EEG and MEG results. The first is the fact that the
EEG matrices seem to achieve higher classification performance
in the faces vs. scrambled comparisons when compared to MEG,
especially along the diagonal where the result is darker red for
EEG than for MEG. The second is the observation that the MEG
seems to show better temporal generalization than EEG, as the
colored portion of the MEG graphs extends further away from
the diagonal (i.e., is more “square”) than that for the EEG graphs.

The third notable observation is that the famous vs. non-
famous graph shows significant differences in MEG, but not
in EEG.

3.8. EEG and MEG Stability Over Time
When Training on 250–400 ms
To understand and visualize these differences more easily, it can
be advantageous to pick a training time window and investigate
to what extent that window generalizes to other time samples
in the trial. For illustrative purposes, we use a training window
between 250 and 400ms, and plot how well the neural pattern
observed in that window generalizes to the rest of the trial.
When running the code below, as in the previous section,
first select the EEG_RAW folder, and then the MEG_RAW
folder.

%% COMPUTE TEMPORAL GENERALIZATION FOR 250-400 ms

cfg = [];

cfg.startdir = 'C:\MY_EXP\RESULTS';

cfg.mpcompcor_method = 'cluster_based';

% specify a 250-400 ms interval in training data:

cfg.trainlim = [250 400];

% average over that training interval:

cfg.reduce_dims = 'avtrain';

% select RAW_EEG when dialog appears:

eeg_stats = adam_compute_group_MVPA(cfg);

% select RAW_MEG when dialog appears:

meg_stats = adam_compute_group_MVPA(cfg);

Two new cfg parameters are important here: cfg.trainlim and
cfg.reduce_dims. The trainlim parameter specifies the temporal
window in milliseconds to which the training data (vertical axis
in Figure 7) should be limited. The parameter cfg.reduce_dims=
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'avtrain' averages over the training window, in this case the period
between 250 and 400ms. The resulting stats structures evaluate
how that train window generalizes to all other samples in the trial.
This can subsequently be plotted using:

%% PLOT TEMPORAL GENERALIZATION FOR 250-400 ms

cfg = [];

cfg.plot_order = { 'EEG_FAM_VS_SCRAMBLED' ...

'EEG_NONFAM_VS_SCRAMBLED' ...

'EEG_FAM_VS_NONFAMOUS' ...

'MEG_FAM_VS_SCRAMBLED' ...

'MEG_NONFAM_VS_SCRAMBLED' ...

'MEG_FAM_VS_NONFAMOUS' };

adam_plot_MVPA(cfg, eeg_stats, meg_stats);

This produces the line graphs in Figure 8, which again show
EEG in the top row and MEG in the bottom row. If decoding
stays high throughout a line graph, this shows that the neural
pattern of cortical activity that occurs between 250-400ms is
stable over time, as it is able to drive classification performance at
all other time points. As one can see in Figure 8, this is indeed the
case for MEG, where classification performance remains above
chance all the way to the end of the trial at 1,500ms. However,
this is not the case for EEG, where classification performance
drops off to chance toward the end of the trial period (in the
faces vs. scrambled comparisons) or is at chance altogether (in
the famous vs. non-famous faces comparison). This seems to
confirm the observation that was made in Figure 7 that face-
related processing generalizes better in MEG than in EEG. Also
confirmed are the observations that initial decoding seems higher
for EEG than for MEG and that classification performance for

famous faces vs. non-famous faces is only significant for MEG
and not for EEG.

3.9. Comparing EEG and MEG Decoding
Accuracies Directly
Although seemingly interesting, the differences between
EEG and MEG so far have been established by observing
significance in one comparison while not observing significance
in another comparison and/or eye-balling the data. For
example, the famous faces vs. non-famous faces comparison
yields significance in MEG, but not in EEG. However, such
observations do not allow one to infer that EEG and MEG are
differentially sensitive to the famous faces vs. non-famous faces
comparison. That inference would require an explicit statistical
test (Nieuwenhuis et al., 2011). As long as the data come
from the same experiment and the same subjects—decoding
analyses provide a common dependent measure to compare
the extent to which different methodologies are able to recover
differences between experimental conditions. To formally
evaluate differences in classification performance across time
between MEG and EEG, they can be compared in a statistical
test. The adam_compare_MVPA_stats function provides this
functionality. Below the code to directly compare the MEG and
EEG stats:

%% COMPARE MEG TO EEG STATS

cfg = [];

cfg.mpcompcor_method = 'cluster_based';

meg_vs_eeg_stats = ...

adam_compare_MVPA_stats(cfg, meg_stats, eeg_stats);
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FIGURE 7 | Temporal generalization plots for all six analyses. The plots show the degree to which the classifier when trained on a given time point (on the y-axis),

generalizes to other time points in the trial (on the x-axis). Color indicates classifier performance using AUC. The diagonal (from the left bottom to the top right) shows

classification performance when the classifier is trained and tested on the same time point. More off-diagonal activity indicates stronger temporal generalization. (top
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FIGURE 8 | Assessing cortical stability in EEG and MEG through generalization across time given a 250–400ms training window.

This difference stats variable can subsequently be plotted using
the adam_plot_MVPA function as we have been doing all
along:

%% PLOT THE MEG - EEG DIFFERENCE

cfg = [];

cfg.plot_order = { 'EEG_FAM_VS_SCRAMBLED' ...

'EEG_NONFAM_VS_SCRAMBLED' ...

'EEG_FAM_VS_NONFAMOUS' };

adam_plot_MVPA(cfg, meg_vs_eeg_stats);

Interestingly, Figure 9 confirms that initial classification
performance during the encoding phase is significantly higher
in EEG than in MEG during the famous vs. scrambled faces
comparison (left graph, below chance classification performance
early on), while temporal generalization is significantly higher
in MEG than in EEG (left graph, above chance classification
performance toward the end of the trial). The same pattern
can be seen in the non-famous vs. scrambled faces comparison,
although the difference in the initial encoding phase does
not survive multiple comparisons correction when applying
cluster-based permutation. Although the MEG comparison of
famous vs. non-famous faces was selectively significant in the
original analysis, the direct comparison between EEG and MEG
is not significant, plausibly due to a lack of power.

4. DISCUSSION

In this article, we have shown how to analyze a publicly available
dataset from Wakeman and Henson (2015) using ADAM. The

analysis pipeline described here can easily be ported to other
datasets by replacing the input filenames in the script and
modifying the class definitions using one’s own event codes. In
the dataset we analyzed, subjects viewed famous, non-famous
and scrambled faces. Unsurprisingly, the results show that ERPs
can show similar outcomes as decoding analyses, as long as one
knows which electrode(s) to select. However, there are a number
of notable advantages to MVPA when compared to standard ERP
analysis.

For example, MVPA does not require one to select electrodes,
as the decoding analysis automatically extracts informational
content from the distribution of activity across all electrodes.
Although prior feature (electrode) selection can still be beneficial
to improve classification performance (for example selecting only
occipital electrodes when a given task is visual), in principle
this step is covered automatically by the training phase of a
decoding analysis. In the analyses described here, the superiority
of this approach becomes apparent when comparing Figure 3

(ERPs) to Figure 4 (classification performance). The decoding
graph uncovers a significant difference between famous and
non-famous faces that the ERP analysis does not identify. The
plausible reason is that the decoding analysis automatically
extracts information relevant to the difference between these
conditions, which in ERPs would require prior knowledge about
which electrodes to select, or require some split half procedure
(Kriegeskorte et al., 2009). Of course, this information is also
present in the univariate ERPs somewhere (or the classification
algorithm could not pick up on it), but experimental differences
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FIGURE 9 | Directly testing the difference in temporal generalization between MEG and EEG given the 250–400ms training window.

can be much harder to identify or substantiate using traditional
ERPs than using MVPA if the locus of the effect is unknown (also
see Fahrenfort et al., 2017a).

Another advantage is that decoding analyses allow one
to look at the stability of neural activation patterns over
time (King and Dehaene, 2014). This advantage is unique to
MVPA, as only multivariate analysis allows one to statistically
characterize patterns of neural activity. For example, the
temporal generalization matrices in Figure 7 reveal the degree
to which representations reflecting the encoding of famous
and non-famous faces generalize to later time points in a
trial. Given the extent of above chance decoding in the far
corners of these graphs (the “squareness” of the red-colored
region showing above chance decoding performance), these
figures suggest that representations of faces during encoding
generalize better to other time points when characterizing them
using MEG than EEG activity. This suggests that EEG and
MEG measurements may be differentially sensitive to stable
representations (maintenance) in the face processing network.

To further investigate this, we looked at temporal
generalization for a specific time window (between 250
and 400ms), and subsequently compared this temporal
generalization signal between MEG and EEG directly in
Figure 9. These graphs reveal that decoding accuracy is better
in EEG than in MEG during an early encoding phase, but
that MEG generalizes better to points later in time in MEG
than in EEG. This interaction in the temporal domain suggests
that EEG and MEG tap into different properties of the face
processing network: EEG seems to have a higher signal to noise
ratio during the fleeting encoding phase, whereas MEG taps
into cortical activity that is stable over time, plausibly reflecting
maintenance involved in evaluating faces. Together, these
analyses reveal a third potential advantage of MVPA. MVPA
provides a common measure to directly compare observations
obtained from different methodologies, as long as the data
are obtained from the same subjects, using the same tasks. In
the current manuscript, this was done when comparing EEG
decoding accuracies to MEG decoding accuracies, but this
methodology in principle also allows one to directly compare
neural decoding sensitivity to behavioral sensitivity, as long as

the data comes from the same subjects and/or care is taken to
properly normalize different dependent measures (Fahrenfort
et al., 2017b).

The analysis pipeline described in this article highlights three
advantages of MVPA over traditional univariate analysis. A more
in depth treatment of the differences between standard univariate
approaches and multivariate analysis can be found in Hebart and
Baker (2017).

In addition, there are a number of advantages of using ADAM
to perform these analyses. ADAM makes it easy to move from
ERP, ERF, or TFR-centered research to MVPA analyses, as it
enables an easy side-by-side comparison between univariate and
multivariate methodologies. This may be particularly helpful for
those who have been performing ERP analyses and want to
transition toMVPA-centered approaches. ADAM takes EEGLAB
or Fieldtrip as input formats, making the switch relatively easy for
those who have already been using standard MATLAB analysis
toolboxes. To further enable this transition, ADAM takes care of a
number of potential confounds that can easily plague an analysis
pipeline put together by those not aware of some of the issues. For
example, ADAM trades versatility for usability by automatically
enforcing balanced designs and by computing AUC rather than
overall accuracy. In addition, it allows one to run a multivariate
analysis on raw data or automatically perform time-frequency
analysis prior to multivariate analysis (not covered in this article),
and it easily applies a FEM in addition to a BDM (not covered in
this article). Many options are automatically applied by default,
or can easily be executed or changed by specifying just one or
two parameters in the cfg variable.

Using ADAM also has disadvantages. ADAM is mostly
maintained by a single person (the first author of this paper),
and for that reason support is limited. ADAM’s core functions
were initially developed to support standard analyses by the
first author, and only later converted into a toolbox to support
researchers that are considering a transition from ERP to MVPA
analyses. Thus although it aligns with the growing movement to
promote open source in cognitive neuroscience (Gleeson et al.,
2017), it does not necessarily provide the latest and greatest
in multivariate analysis. For those already comfortable with
programming and/or multivariate analysis, a number of more
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versatile alternatives for time-series based MVPA exist which
have larger development teams, notably CoSMoMVPA (http://
www.cosmomvpa.org, MATLAB) (Oosterhof et al., 2016), the
Neural Decoding Toolbox (http://www.readout.info, MATLAB)
(Meyers, 2013), the Decision Decoding Toolbox (http://ddtbox.
github.io/DDTBOX, MATLAB) (Bode et al., 2018), MNE (http://
www.martinos.org/mne/stable/manual/decoding.html, Python)
(Gramfort et al., 2014) and the PyMVPA toolbox (http://www.
pymvpa.org, Python) (Hanke et al., 2009). Yet, for those wanting
to dip their toes into multivariate waters for the first time, ADAM
could be a great start.
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